**Chapter 35 Homework** 

## Due: 8:00am on Thursday, April 22, 2010

Note: To understand how points are awarded, read your instructor's Grading Policy.

[Return to Standard Assignment View]



|                                                                                                  |                                                                                                                                                                                                                         | $\vec{B}$ $\vec{v}$ $x$                               |
|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| Hint C.1                                                                                         | Working backward with the right-hand rule                                                                                                                                                                               | z*                                                    |
| ANSWER:                                                                                          | $ \begin{array}{c} +x \\ -x \\ \oplus +y \\ -y \\ +z \\ -z \\ a ta +45^{\circ} angle in the xz plane \end{array} $                                                                                                      |                                                       |
|                                                                                                  | Correct                                                                                                                                                                                                                 |                                                       |
| Part D<br>The electric field ve<br>axis.) Based on this                                          | ctor and the direction of propagation of an electromagnetic wave are illustrated. ( $\vec{E}$ is in $xz$ plane and makes a 45° angle with the $+x$ information, in what direction does the magnetic field vector point? | $z$ $\vec{v}$ $\vec{v}$ $\vec{v}$ $\vec{v}$ $\vec{v}$ |
| Hint D.1                                                                                         | Working backward with the right-hand rule<br>Hint not displayed                                                                                                                                                         |                                                       |
| ANSWER:                                                                                          | • $+x$<br>• $-x$<br>• $+y$<br>• $-y$<br>• $+z$<br>• $-z$<br>• at a -45° angle in the $xz$ plane<br>Correct                                                                                                              |                                                       |
|                                                                                                  | Electromagnetic Waves Ranking Task                                                                                                                                                                                      |                                                       |
| Part A<br>Rank these electroma                                                                   | ignetic waves on the basis of their speed (in vacuum).                                                                                                                                                                  |                                                       |
| Like all waves, the relationship among wave speed, frequency, and wavelength is $c = f \lambda.$ |                                                                                                                                                                                                                         |                                                       |
| Rank from fastest t                                                                              | -<br>o slowest. To rank items as equivalent, overlap them.                                                                                                                                                              |                                                       |
|                                                                                                  | View<br>Correct                                                                                                                                                                                                         |                                                       |
| Part B<br>Rank these electrom                                                                    | agnetic waves on the basis of their wavelength.                                                                                                                                                                         |                                                       |
| Hint B.1<br>Different wavelengt                                                                  | Electromagnetic spectrum<br>h electromagnetic waves have historically been given different names. The traditional names for the various wavelengths are listed below.                                                   |                                                       |

|                                                                                                                                                                    | Microwave<br>Radio<br>5,000,000,000 50,000 500 250 0.5 0.0005<br>Wavelength nanometers<br>I cm = 10,000,000 nanometers                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hint B.2<br>By examining a rad                                                                                                                                     | Radio waves<br>lio dial, you will discover that FM radio stations broadcast with frequencies between 88 and 108 MHz (megahertz, or millions of cycles per second) and AM radio stations broadcast between 520<br>lobate. or thoremede of one are second)                                                                                                                                                                                                    |
| Hint B.3                                                                                                                                                           | Visible light                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Rank from longest                                                                                                                                                  | to shortest. To rank items as equivalent, overlap them.                                                                                                                                                                                                                                                                                                                                                                                                     |
| ANSWER:                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                    | View<br>Correct                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Rank from largest<br>ANSWER:                                                                                                                                       | to smallest. To rank items as equivalent, overlap them.                                                                                                                                                                                                                                                                                                                                                                                                     |
| Rank from largest<br>ANSWER:                                                                                                                                       | to smallest. To rank items as equivalent, overlap them.           View         Correct                                                                                                                                                                                                                                                                                                                                                                      |
| Rank from largest<br>ANSWER:                                                                                                                                       | to smallest. To rank items as equivalent, overlap them.           View.           Correct                                                                                                                                                                                                                                                                                                                                                                   |
| Rank from largest<br>ANSWER:                                                                                                                                       | to smallest. To rank items as equivalent, overlap them.                                                                                                                                                                                                                                                                                                                                                                                                     |
| Rank from largest<br>ANSWER:<br>he magnetic field o<br>Part A<br>What is the wave's '                                                                              | to smallest. To rank items as equivalent, overlap them.<br>View<br>View<br>Correct<br>Problem 35.14<br>fan electromagnetic wave in a vacuum is $B_x = (3.0 \mu\text{T}) \sin((1.00 \times 10^7)x - \omega t)$ , where x is in m and t is in s.<br>wavelength?                                                                                                                                                                                               |
| Rank from largest ANSWER: ANSWER: The magnetic field o Part A What is the wave's s ANSWER:                                                                         | to smallest. To rank items as equivalent, overlap them.<br>$View Correct$ Problem 35.14 fan electromagnetic wave in a vacuum is $B_x = (3.0 \mu\text{T}) \sin((1.00 \times 10^7)x - \omega t)$ , where $x$ is in m and $t$ is in s.<br>wavelength?<br>$\lambda = 6.28 \times 10^{-7}$ m                                                                                                                                                                     |
| Rank from largest ANSWER: ANSWER: The magnetic field o Part A What is the wave's s ANSWER: Part B What is the wave's s                                             | View         View         Correct         Problem 35.14         fan electromagnetic wave in a vacuum is $B_x = (3.0 \mu\text{T}) \sin((1.00 \times 10^7)x - \omega t)$ , where x is in m and t is in s.         wavelength? $\lambda = 6.28 \times 10^{-7}$ m         frequency?                                                                                                                                                                            |
| Rank from largest ANSWER: ANSWER: he magnetic field o Part A What is the wave's ANSWER: Part B What is the wave's ANSWER:                                          | to smallest. To rank items as equivalent, overlap them.<br>$\frac{V_{iew}}{Correct}$ Problem 35.14<br>fan electromagnetic wave in a vacuum is $B_x = (3.0\mu\text{T}) \sin((1.00 \times 10^7)x - \omega t)$ , where $x$ is in m and $t$ is in s.<br>wavelength?<br>$\lambda = 6.28 \times 10^{-7} \text{ m}$<br>frequency?<br>$f = 4.77 \times 10^{14} \text{ Hz}$                                                                                          |
| Rank from largest ANSWER: ANSWER: he magnetic field o Part A What is the wave's o ANSWER: Part B What is the wave's o ANSWER: Part C What is the wave's o          | To smallest. To rank items as equivalent, overlap then.<br>View<br>Correct<br>Problem 35.14<br>fan electromagnetic wave in a vacuum is $B_x = (3.0 \mu\text{T}) \sin((1.00 \times 10^7)x - \omega t)$ , where $x$ is in $m$ and $t$ is in $s$ .<br>wavelength?<br>$x = 6.28 \times 10^{-7} \text{ m}$<br>frequency?<br>$f = 4.77 \times 10^{14} \text{ Hz}$<br>electric field amplitude?                                                                    |
| Rank from largest ANSWER: ANSWER: he magnetic field o Part A What is the wave's o ANSWER: Part B What is the wave's o ANSWER: Part C What is the wave's o ANSWER:  | to smallest. To rank items as equivalent, overlap them.<br>$\frac{V_{itew}}{Correct}$ Problem 35.14<br>far electromagnetic wave in a vacuum is $B_x = (3.0 \mu\text{T}) \sin((1.00 \times 10^7)x - \omega t)$ , where $x$ is in $m$ and $t$ is in $g$ .<br>wavelength?<br>$\lambda = 6.28 \times 10^{-7} \text{ m}$<br>frequency?<br>$f = 4.77 \times 10^{14} \text{ Hz}$<br>electric field amplitude?<br>$\mathcal{L}_0 = \frac{900}{Correct} \text{ V/m}$ |
| Rank from largest ANSWER: ANSWER: The magnetic field o Part A What is the wave's o ANSWER: Part B What is the wave's o ANSWER: Part C What is the wave's o ANSWER: | to smallest. To rank items as equivalent, overlap then.<br>$\frac{View}{Correct}$ Problem 35.14 fan electromagnetic wave in a vacuum is $B_x = (3.0 \mu T) \sin((1.00 \times 10^3)x - \omega t)$ , where $x$ is in m and $t$ is in s.<br>wavelength?<br>$x = 6.28 \times 10^{-7} \text{ m}$ frequency?<br>$f = 4.77 \times 10^{14} \text{ Hz}$ electric field amplitude?<br>$E_0 = \frac{900}{Correct} \text{ V/m}$                                         |

| What is the intensity                                                                                                                                          | of the smallest detectable signal?                                                                                                                                                                                   |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| ANSWER:                                                                                                                                                        | 1.92×10 <sup>-10</sup> W/m <sup>2</sup><br>Correct                                                                                                                                                                   |  |  |  |
|                                                                                                                                                                |                                                                                                                                                                                                                      |  |  |  |
|                                                                                                                                                                | Problem 35.21                                                                                                                                                                                                        |  |  |  |
| A radio antenna broad                                                                                                                                          | leasts a 1.0 MHz radio wave with 24.0 kW of power. Assume that the radiation is emitted uniformly in all directions.                                                                                                 |  |  |  |
| Part A                                                                                                                                                         |                                                                                                                                                                                                                      |  |  |  |
| What is the wave's intensity 32.0 km from the antenna?                                                                                                         |                                                                                                                                                                                                                      |  |  |  |
| ANSWER:                                                                                                                                                        | 1.87×10 <sup>-6</sup> W/m <sup>2</sup><br>Correct                                                                                                                                                                    |  |  |  |
| Part B                                                                                                                                                         |                                                                                                                                                                                                                      |  |  |  |
| What is the electric field amplitude at this distance?                                                                                                         |                                                                                                                                                                                                                      |  |  |  |
| ANSWER:                                                                                                                                                        | 3.75×10 <sup>-2</sup> V/m<br>Correct                                                                                                                                                                                 |  |  |  |
|                                                                                                                                                                |                                                                                                                                                                                                                      |  |  |  |
| Radiation Pressure                                                                                                                                             |                                                                                                                                                                                                                      |  |  |  |
| A communications sat                                                                                                                                           | ellite orbiting the earth has solar panels that completely absorb all sunlight incident upon them. The total area $A$ of the panels is $10 \text{ m}^2$ .                                                            |  |  |  |
|                                                                                                                                                                |                                                                                                                                                                                                                      |  |  |  |
| Part A<br>The intensity of the s<br>absorbed by the pane                                                                                                       | un's radiation incident upon the earth is about $I = 1.4 \text{ kW/m^2}$ . Suppose this is the value for the intensity of sunlight incident upon the satellite's solar panels. What is the total solar power $P$ ds? |  |  |  |
| Hint A.1                                                                                                                                                       | Definition of intensity                                                                                                                                                                                              |  |  |  |
|                                                                                                                                                                | Hint not displayed                                                                                                                                                                                                   |  |  |  |
| Express your answe                                                                                                                                             | r numerically in kilowatts to two significant figures.                                                                                                                                                               |  |  |  |
| ANSWER:                                                                                                                                                        | $P = \frac{14}{Correct} \text{ kW}$                                                                                                                                                                                  |  |  |  |
| Part B         What is the total force $F$ on the panels exerted by radiation pressure from the sunlight?                                                      |                                                                                                                                                                                                                      |  |  |  |
| Hint B.1 Time derivative of a kinetic energy in relation to momentum Hint not displayed                                                                        |                                                                                                                                                                                                                      |  |  |  |
| Hint B.2                                                                                                                                                       | Working out the power incident upon the panels                                                                                                                                                                       |  |  |  |
| Once you have found a relation between the time derivative of the energy $K$ and the momentum $p$ , recall that, in classical mechanics, we define power to be |                                                                                                                                                                                                                      |  |  |  |
|                                                                                                                                                                | $P = \frac{dK}{dt},$                                                                                                                                                                                                 |  |  |  |
| whereas forces are                                                                                                                                             | given by                                                                                                                                                                                                             |  |  |  |
| $F = \frac{dp}{dt}$ .                                                                                                                                          |                                                                                                                                                                                                                      |  |  |  |
| Now find a symbolic expression for the power <i>P</i> delivered by radiation in terms of the force <i>F</i> imparted by the radiation.                         |                                                                                                                                                                                                                      |  |  |  |
| Your answer will involve the speed of light <i>c</i> .                                                                                                         |                                                                                                                                                                                                                      |  |  |  |
| ANSWER:                                                                                                                                                        | $P = \frac{Fc}{Correct}$                                                                                                                                                                                             |  |  |  |
| Hint B.3                                                                                                                                                       | Getting the units right                                                                                                                                                                                              |  |  |  |
| Hint not displayed                                                                                                                                             |                                                                                                                                                                                                                      |  |  |  |
| Express the total force numerically, to two significant figures, in units of newtons.                                                                          |                                                                                                                                                                                                                      |  |  |  |
| ANSWER:                                                                                                                                                        | $F = \frac{4.70 \times 10^{-5}}{Correct}$ N                                                                                                                                                                          |  |  |  |
|                                                                                                                                                                |                                                                                                                                                                                                                      |  |  |  |
|                                                                                                                                                                | Problem 35.53                                                                                                                                                                                                        |  |  |  |
| For a science project,                                                                                                                                         | you would like to horizontally suspend an 8.5 by 11 inch sheet of black paper in a vertical beam of light whose dimensions exactly match the paper.                                                                  |  |  |  |
| Part A If the mass of the sheet is 1.0 g, what light intensity will you need?                                                                                  |                                                                                                                                                                                                                      |  |  |  |
|                                                                                                                                                                |                                                                                                                                                                                                                      |  |  |  |

| ANSWER:                        | 4.87×10 <sup>7</sup> W/m <sup>2</sup><br>Correct                                                                                                                        |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                | Problem 35.25                                                                                                                                                           |
| Only 20.0% of the in           | tensity of a polarized light wave passes through a polarizing filter.                                                                                                   |
| Part A<br>What is the angle be | tween the electric field and the axis of the filter?                                                                                                                    |
| ANSWER:                        | 63.4 °<br>Correct                                                                                                                                                       |
|                                | Problem 35.27                                                                                                                                                           |
| Inpolarized light with         | th intensity 320 $W/m^2$ passes first through a polarizing filter with its axis vertical, then through a polarizing filter with its axis 40.0 $^{\circ}$ from vertical. |
| Part A<br>What light intensity | emerges from the second filter?                                                                                                                                         |
| ANSWER:                        | 93.9 W/m <sup>2</sup><br>Correct                                                                                                                                        |

Your score on this assignment is 99.2%. You received 59.49 out of a possible total of 60 points.