Chapter 35 Homework

Due: 8:00am on Thursday, April 22, 2010
Note: To understand how points are awarded, read your instructor's Grading Policy.
[Return to Standard Assignment View]

Problem 35.11	
Part A	
A square parallel-plate capacitor 5.50 cm on a side has a 0.580 mm gap. What is the displacement current in the capacitor if the potential difference across the capacitor is increasing at $500,000 \mathrm{~V} / \mathrm{s}$?	
ANSWER:	$\underset{\text { Correct }}{2.31 \times 10^{-5}} \mathrm{~A}$

Electric and Magnetic Field Vectors Conceptual Question		
Part A		
The electric and electromagnetic	etic field vectors at a specific point in space and time are illustrated. Based on this information, in what direction does the propagate?	
Hint A. 1	Right-hand rule for electromagnetic wave velocity Hint not displayed	
ANSWER:	$+x$ $-x$ $+y$ $-y$ $+z$ $-z$ at a $+45^{\circ}$ angle in the $x y$ plane Correct	
Part B The electric and magnetic field vectors at a specific point in space and time are illustrated. (\vec{E} and \vec{B} are in the $x y$ plane. Both vectors make 45° angles with the $+y$ axis.) Based on this information, in what direction does the electromagnetic wave propagate?		
Part C The magnetic fiel electric field vect	tor and the direction of propagation of an electromagnetic wave are illustrated. Based on this information, in what direction does the int?	${ }^{\text {¢ }}$

Problem 35.14

The magnetic field of an electromagnetic wave in a vacuum is $B_{z}=(3.0 \mu \mathrm{~T}) \sin \left(\left(1.00 \times 10^{7}\right) x-\omega t\right)$, where x is in m and t is in s .

Part A
What is the wave's wavelength?

ANSWER:

```
            \lambda= 6.28\times10-7 Correct m
```

Part B
What is the wave's frequency?

ANSWER:

```
f= 4.77\times10 Correct 
```

Part C
What is the wave's electric field amplitude?

ANSWER:

$$
E_{0}=\underset{\text { Correct }}{900} \mathrm{~V} / \mathrm{m}
$$

What is the intensity of the smallest detectable signal?	
ANSWER:	$\underset{\text { Correct }}{1.92 \times 10^{-10}} \mathrm{~W} / \mathrm{m}^{2}$

Radiation Pressure

A communications satellite orbiting the earth has solar panels that completely absorb all sunlight incident upon them. The total area A of the panels is $10 \mathrm{~m}^{2}$

Part A

The intensity of the sun's radiation incident upon the earth is about $I=1.4 \mathrm{~kW} / \mathrm{m}^{2}$. Suppose this is the value for the intensity of sunlight incident upon the satellite's solar panels. What is the total solar power P absorbed by the panels?

Hint A. $1 \quad$ Definition of intensity
Hint not displayed
Express your answer numerically in kilowatts to two significant figures.
ANSWER: $\quad P=14$ Correct kW

Part B
What is the total force F on the panels exerted by radiation pressure from the sunlight?

Hint B. 1 Time derivative of a kinetic energy in relation to momentum

Hint not displayed

Hint B. 2 Working out the power incident upon the panels

Once you have found a relation between the time derivative of the energy K and the momentum p, recall that, in classical mechanics, we define power to be

$$
P=\frac{d K}{d t},
$$

whereas forces are given by

$$
F=\frac{d p}{d t} .
$$

Now find a symbolic expression for the power P delivered by radiation in terms of the force F imparted by the radiation.

ANSWER:	$P=\begin{aligned} F c \\ \text { Correct } \end{aligned}$
Hint B. 3	Getting the units right
Hint not displayed	
Express the total force numerically, to two significant figures, in units of newtons.	
ANSWER:	$\begin{aligned} & F= 4.70 \times 10^{-5} \\ & \text { Correct } \end{aligned}$

Problem 35.53

For a science project, you would like to horizontally suspend an 8.5 by 11 inch sheet of black paper in a vertical beam of light whose dimensions exactly match the paper.
Part A
If the mass of the sheet is 1.0 g , what light intensity will you need?

Problem 35.25

Only 20.0% of the intensity of a polarized light wave passes through a polarizing filter
Part A
What is the angle between the electric field and the axis of the filter?

$$
\begin{array}{l|l}
\text { ANSWER: } & \begin{array}{l}
\text { 63.4 } \\
\\
\text { Correct }
\end{array}
\end{array}
$$

Unpolarized light with intensity $320 \mathrm{~W} / \mathrm{m}^{2}$ passes first through a polarizing filter with its axis vertical, then through a polarizing filter with its axis 40.0° from vertical.

Part A
What light intensity emerges from the second filter?

ANSWER: $\begin{gathered}93.9 \\ \text { Correct }\end{gathered} \mathrm{W} / \mathrm{m}^{2}$

Score Summary:
Your score on this assignment is 99.2%.
You received 59.49 out of a possible total of 60 points.

