Chapter 20 Homework

Due: 8:00am on Tuesday, January 19, 2010
Note: To understand how points are awarded, read your instructor's Grading Policy.
[Return to Standard Assignment View]

Properties of Ocean Waves

A fisherman notices that his boat is moving up and down periodically, owing to waves on the surface of the water. It takes a time of 2.80 s for the boat to travel from its highest point to its lowest, a total distance of 0.700 m . The fisherman sees that the wave crests are spaced a horizontal distance of 5.60 m apart.

Part A

How fast are the waves traveling?
Hint A. $1 \quad$ How to approach the problem

Calculate the period of the ocean waves, using the fisherman's observations. Then, use the period and wavelength to calculate the speed of the waves.
Hint A. 2 Calculate the period of the waves

Calculate the period T of the ocean waves.

Hint A.2.1 Definition of period

The period of a wave is the time it takes for one full wavelength to pass a particular point. This is also the time it takes to go from one crest to the next, or from one trough to the next.
Express your answer in seconds using three significant figures.

$$
\begin{array}{c|c}
\text { ANSWER: } & T=\underset{\text { Correct }}{\mathbf{5 . 6 0}} \mathrm{s}
\end{array}
$$

Hint A. 3 Equation for the speed of a wave
The speed of a wave is given by $v=f \lambda$, where f is the frequency of the waves and $\lambda=5.60 \mathrm{~m}$ is the wavelength. The frequency is simply the reciprocal of the period, or $f=1 / T$.
Express the speed v in meters per second using three significant figures.

ANSWER: $\quad v=$| 1.00 |
| :--- |
| Correct |
| m / s |

Part B

What is the amplitude A of each wave?
Hint B. 1 Definition of amplitud

Express your answer in meters using three significant figures.
ANSWER:

$$
A=0.350
$$

$$
=0.350
$$

The fisherman does not simply move up and down as the waves pass by. In fact, the motion of the fisherman will be roughly circular with both upward and forward components (with respect to the
direction of the wave) as the wave rises and downward and backward components as the wave falls. The water that comprises the ocean wave itself moves in this same way. Thus, an ocean wave is not a purely transverse wave; it also has a longitudinal component.

The Hearing of a Bat

Bats are mainly active at night. They have several senses that they use to find their way about, locate prey, avoid obstacles, and "see" in the dark Besides the usual sense of vision, bats are able to emit high-frequency sound waves and hear the echo that bounces back when these sound waves hit an object. This sonar-like system is called echolocation. Typical frequencies emitted by bats are between 20 and 200 kHz . Note that the human ear is sensitive only to frequencies as high as 20 kHz

A moth of length 1.0 cm is flying about 1.0 m from a bat when the bat emits a sound wave at 80.0 kHz . The temperature of air is about $10.0^{\circ} \mathrm{C}$. To sense the presence of the moth using echolocation, the bat must emit a sound with a wavelength equal to or less than the length of the insect.

The speed of sound that propagates in an ideal gas is given by

$$
v=\sqrt{\frac{\gamma R T}{M}}
$$

where γ is the ratio of heat capacities ($\gamma=1.4$ for air), T is the absolute temperature in kelvins (which is equal to the Celsius temperature plus $273.15^{\circ} \mathrm{C}$), M is the molar mass of the gas (for air, the average molar mass is $\left.M=28.8 \times 10^{-3} \mathrm{~kg} / \mathrm{mol}\right)$, and R is the universal gas constant $\left(R=8.314 \mathrm{~J} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1}\right)$.

Part A

Find the wavelength λ of the $80.0-\mathrm{kHz}$ wave emitted by the bat.

Hint A. 1 Relating wavelength, frequency, and speed of a wave

In periodic waves, the speed at which the wave pattern travels is given by
where λ is the wavelength and f is the frequency of the wave.

Hint A. 2 Find the speed of sound in air
Find the speed of sound v in air at $10.0^{\circ} \mathrm{C}$.
Express your answer in meters per second.
ANSWER: $\quad v=\underset{\text { Correct }}{338} \mathrm{~m} / \mathrm{s}$

Express your answer in millimeters.
ANSWER:

$$
\lambda=\underset{\text { Correct }}{4.23} \mathrm{~mm}
$$

Part B

Will the bat be able to locate the moth despite the darkness of the night?

ANSWER: | yes |
| :---: |
| no |
| Correct |

Part C

How long after the bat emits the wave will it hear the echo from the moth?

Hint C. 1 How to approach the problem

After emitting the high-frequency sound, the bat waits for any echoes coming back from possible obstacles. Therefore the time needed to locate an obstacle depends on the speed of sound and the distance of the obstacle from the bat.

Hint C. 2 Find the time needed for the sound wave to reach the moth

How long does it take the sound wave to reach the moth?
Express your answer in milliseconds to three significant figures.

ANSWER: | 2.96 |
| :---: |
| Correct | ms

The time elapsed from the emission of the sound to the detection of its echo is the time the sound wave takes to travel 1 m and back.
Express your answer in milliseconds to two significant figures.

```
    ANSWER: 5.9
    Correct ms
```


Surface Waves

The waves on the ocean are surface waves: They occur at the interface of water and air, extending down into the water and up into the air at the expense of becoming exponentially reduced in amplitude. They are neither transverse nor longitudinal. The water both at and below the surface travels in vertical circles, with exponentially smaller radius as a function of depth.

Both empirical measurements and calculations beyond the scope of introductory physics give the propagation speed of water waves as

$$
v=\sqrt{\frac{g}{k}}
$$

where $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$ is the magnitude of the acceleration due to gravity and k is the wavenumber.
This relationship applies only when the following three conditions hold:

1. The water is several times deeper than the wavelength.
2. The wavelength is large enough that the surface tension of the waves can be neglected.
3. The ratio of wave height to wavelength is small.

The restoring force (analogous to the tension in a string) that restores the water surface to flatness is due to gravity, which explains why these waves are often called "gravity waves."

Part A
Find the speed v of water waves in terms of the wavelength λ.
Hint A. 1 Definition of k

> Hint not displayed

Express the speed in terms of g, λ, and π.
ANSWER:

$$
\begin{aligned}
& v=\sqrt{\frac{\lambda g}{2 \pi}} \\
& \text { Correct }
\end{aligned}
$$

Part B

Find the speed v of a wave of wavelength $\lambda=8.0 \mathrm{~m}$.
Give your answer in meters per second to a precision of two significant figures.
ANSWER:

$$
v(\lambda=8 \mathrm{~m}){ }_{\text {Correct }}^{3.5} \mathrm{~m} / \mathrm{s}
$$

Part C
Find the period T for a wave of wavelength λ.
Hint C. $1 \quad$ Formula for T
 and the velocity v.

ANSWER:

$$
T=\text { Answer not displayed }
$$

Express the period in terms of π, λ, and g.
ANSWER:

$$
T=\frac{\lambda}{\sqrt{\frac{(g \cdot \lambda)}{2 \pi}}} \begin{aligned}
& \text { Correct }
\end{aligned}
$$

Part D
On the East Coast of the United States, the National Weather Service frequently reports waves with a period of 4.0 s . Find the wavelength λ and speed v of these waves.
Hint D. 1
Relationship between wavelength and period
Hint not displayed
Express your answers numerically as an ordered pair separated by a comma. Give an accuracy of two significant figures.
ANSWER:

$$
\lambda, v=\underset{\text { Correct }}{\mathbf{2 5 , 6} \mathbf{2 5}} \mathrm{m}, \mathrm{~m} / \mathrm{s}
$$

Part E
On the West Coast of the United States, the National Weather Service frequently reports waves (really swells) with a period of 15 s . Find the wavelength λ and speed v of these waves.
Express your answers numerically as an ordered pair separated by a comma. Give an accuracy of two significant figures.
ANSWER:

$$
\lambda, v=\underset{\text { Correct }}{\mathbf{3 5 0 , 2 3}} \mathrm{m}, \mathrm{~m} / \mathrm{s}
$$

Conceptual Question 20.5

Part A
What is the amplitude of the traveling wave in the figure?
Express your answer using two significant figures.

ANSWER:

$$
A=4.0 \text { Correct }^{4} \mathrm{~cm}
$$

Part B
What is the wavelength of the traveling wave in the figure?
Express your answer using two significant figures.
ANSWER:

$$
\lambda=\text { Correct }^{12} \mathrm{~m}
$$

Part C
What is the frequency of the traveling wave in the figure?
Express your answer using two significant figures.
ANSWER:

$$
f=\underset{\text { Correct }}{\mathbf{2} .0} \mathrm{~Hz}
$$

Part D
What is the phase constant of the traveling wave in the figure?
Express your answer in terms of constant π.
ANSWER:

$$
\phi_{0}=\underset{\text { Correct }}{0.524} \mathrm{rad}
$$

Problem 20.2

Part A What tension will give a speed of $181 \mathrm{~m} / \mathrm{s}$?	
ANSWER:	${ }_{\text {Correct }} \mathrm{N}$

Problem 20.29

The intensity of electromagnetic waves from the sun is $1.4 \mathrm{~kW} / \mathrm{m}^{2}$ just above the earth's atmosphere. Eighty percent of this reaches the surface at noon on a clear summer day. Suppose you think of your back as a $35.0 \mathrm{~cm} \times 52.0 \mathrm{~cm}$ rectangle.

Part A

How many joules of solar energy fall on your back as you work on your tan for 0.800 hr ?

```
ANSWER:
```

```
5.87\times105
```

```
5.87\times105
```


Doppler Shift

Learning Goal: To understand the terms in the Doppler shift formula.
The Doppler shift formula gives the frequency f_{L} at which a listener L hears the sound emitted by a source S at frequency f_{S} :

$$
f_{\mathrm{L}}=f_{\mathrm{S}} \frac{v+v_{\mathrm{L}}}{v+v_{\mathrm{S}}},
$$

where v is the speed of sound in the medium, v_{L} is the velocity of the listener, and v_{S} is the velocity of source.
Part A
The velocity of the source is positive if the source is ___ Note that this equation may not use the sign convention you are accustomed to. Think about the physical situation before answering.

| Hint A. 1 Relating the frequency and the source velocity | Hint not displayed |
| :--- | :--- | :--- |

ANSWER: \quad| traveling in the $+x$ direction |
| :--- |
| traveling toward the listener |
| traveling away from the listener |
| Correct |

Part B
The velocity of the source is measured with respect to the \qquad

$$
\begin{aligned}
& \text { medium (such as air or water) } \\
& \text { listener } \\
& \text { Correct }
\end{aligned}
$$

Part C

The velocity of the listener is positive if the listener is

Hint C. $1 \quad$ Relating the frequency and the listener's velocity

ANSWER:	traveling in the $+x$ direction traveling toward the source traveling away from the source Correct
Part D The velocity of the listener is measured with respect to the	
ANSWER:	source medium Correct

Here are two rules to remember when using the Doppler shift formula:

1. Velocity is measured with respect to the medium.
2. The velocities are positive if they are in the direction from the listener to the source.

Part E
Imagine that the source is to the right of the listener, so that the positive reference direction (from the listener to the source) is in the $+\hat{x}$ direction. If the listener is stationary, what value does f_{L} approach as the source's speed approaches the speed of sound moving to the right?

ANSWER:

$$
\begin{aligned}
& 0 \\
& \frac{1}{2} f_{\mathrm{S}} \\
& 2 f_{\mathrm{S}} \\
& \text { It approaches infinity. } \\
& \text { Correct }
\end{aligned}
$$

Part F
Now, imagine that the source is to the left of the listener, so that the positive reference direction is in the $-\hat{x}$ direction. If the source is stationary, what value does f_{L} approach as the listener's speed (moving in the $+\hat{x}$ direction) approaches the speed of sound?

ANSWER:

- 0

$\frac{1}{2} f_{\mathrm{S}}$
${ }_{2 f}$
It approaches infinity
Correct

Basically in this case the listener doesn't hear anything since the sound waves cannot catch up with him or her.

Part G
In this last case, imagine that the listener is stationary and the source is moving toward the listener at the speed of sound. (Note that it is irrelevant whether the source is moving to the right or to the left.) What is f_{L} when the sound waves reach the listener?

ANSWER:

$$
\begin{aligned}
& 0 \\
& \frac{1}{2} f_{\mathrm{S}}
\end{aligned}
$$

$2 f_{\mathrm{S}}$
It approaches infinity
Correct

This case involves what is called a sonic boom. The listener will hear no sound ($f_{\mathrm{L}}=0$) until the sonic boom reaches him or her (just as the source passes by). At that instant, the frequency will be infinite. There is no time between the passing waves--they are literally right on top of each other. That's a lot of energy to pass by the listener at once, which explains why a sonic boom is so loud.

The Doppler Effect on a Train

A train is traveling at $30.0 \mathrm{~m} / \mathrm{s}$ relative to the ground in still air. The frequency of the note emitted by the train whistle is 262 Hz .

Part A

What frequency $f_{\text {approach }}$ is heard by a passenger on a train moving at a speed of $18.0 \mathrm{~m} / \mathrm{s}$ relative to the ground in a direction opposite to the first train and approaching it?

Express your answer in hertz.
ANSWER: $\quad f_{\text {recode }}=\underset{\text { Correct }}{\mathbf{2 2 8}} \mathrm{Hz}$

Score Summary:

Your score on this assignment is 99.8%.
You received 69.87 out of a possible total of 70 points.

