Chapter 19 Homework

Due: 9:00am on Wednesday, December 9, 2009

Note: To understand how points are awarded, read your instructor's Grading Policy.

[Return to Standard Assignment View]

Problem 19.1		
A heat engine with a	thermal efficiency of 45.0% does 140 J of work per cycle.	
Part A		
How much heat is en	tracted from the hot reservoir per cycle?	
ANSWER:	311 I	
	311 J Correct	
Part B		
	hausted to the cold reservoir per cycle?	
ANSWER:	171 J Correct	
101 0000	Problem 19.8	
1.0 L of 20°C water	is placed in a refrigerator. The refrigerator's motor must supply an extra 8.0 W power to chill the water to 5°C in 1.0 hr	
Part A		
What is the refrigera	tor's coefficient of performance?	
ANSWER:	2.18	
	Correct	
	Problem 19.14	
Part A		
	e heat engine shown in the figure?	
		p (kPa)
		400 - • • • •
		Q = -90 J
		200 -
		200
		Q = -25 J
		$0 + \frac{Q - 253}{0} \frac{V}{100} \frac{V}{200} V (\text{cm}^3)$
		0 100 200
ANSWER:	$W_{\text{out}} = \frac{30.0}{Correct}$ J	
Part B		
What is Q_H for the	heat engine shown in the figure?	
ANSWER:		
ANSWER:	$Q_H = \frac{145}{Correct}$ J	
Part C	. The issues for the last ansing shown in the former?	
what is the thermal	efficiency for the heat engine shown in the figure?	
ANSWER:	$\eta = \frac{0.207}{Correct}$	
	Coneci	
Problem 19.20		
Which, if any, of the	effigerators in the figure violate (a) the first law of thermodynamics or (b) the second law of thermodynamics?	(a) Hot reservoir $T_{\rm H} = 400$ K (b) Hot reservoir $T_{\rm H} = 400$ K
		↑ 60J
		20 J Refrigerator 10 J Refrigerator
		40 J 40 J
		Cold reservoir $T_c = 300 \text{ K}$ Cold reservoir $T_c = 300 \text{ K}$

	(c) Hot reservoir $T_{\rm m} = 400 \text{ K}$ 20 J $I_{\rm m}$ $T_{\rm m} = 400 \text{ K}$ 20 J $I_{\rm m}$ $T_{\rm m} = 400 \text{ K}$ Cold reservoir $T_{\rm c} = 300 \text{ K}$	
Part A		
ANSWER:	 The c refrigerator violate the first law of thermodynamics and b refrigerator violate the second law of thermodynamics The a refrigerator violate the first law of thermodynamics and b refrigerator violate the second law of thermodynamics The b refrigerator violate the first law of thermodynamics and c refrigerator violate the second law of thermodynamics The c refrigerator violate the first law of thermodynamics and a refrigerator violate the second law of thermodynamics The c refrigerator violate the first law of thermodynamics and a refrigerator violate the second law of thermodynamics The a refrigerator violate the first law of thermodynamics and c refrigerator violate the second law of thermodynamics The a refrigerator violate the first law of thermodynamics and c refrigerator violate the second law of thermodynamics The a refrigerator violate the first law of thermodynamics and c refrigerator violate the second law of thermodynamics The a refrigerator violate the first law of thermodynamics and c refrigerator violate the second law of thermodynamics The a refrigerator violate the first law of thermodynamics and c refrigerator violate the second law of thermodynamics The a refrigerator violate the first law of thermodynamics and c refrigerator violate the second law of thermodynamics 	
Problem 19.21		
Part A At what cold-reservoir temperature (in °C) would a Carnot engine with a hot-reservoir temperature of 415 °C have an efficiency of 40.0 %?		
ANSWER:	140 °C Correct	
Problem 19.48		
A nuclear power plant generates 2000 MW of heat energy from nuclear reactions in the reactor's core. This energy is used to boil water and produce high-pressure steam at 300°C. The steam spins a turbine, which produces 700 MW of electric power, then the steam is condensed and the water is cooled to 30°C before starting the cycle again.		
Part A What is the maximum possible thermal efficiency of the power plant?		
ANSWER:	47.1 % Correct	
Part B What is the plant's actual efficiency?		
ANSWER:	35.0 % Correct	
Part C		
Cooling water from a river flows through the condenser (the low-temperature heat exchanger) at the rate of 1.2×10^8 L/hr (≈ 30 million gallons per hour). If the river water enters the condenser at 18°C, what is its exit temperature?		
ANSWER:	27.3 °C Correct	

Score Summary: Your score on this assignment is 99.9%. You received 29.97 out of a possible total of 30 points.