Chapter 14 Homework

Due: 9:00am on Thursday, November 19, 2009

Note: To understand how points are awarded, read your instructor's Grading Policy.
[Return to Standard Assignment View]

Good Vibes: Introduction to Oscillations

Learning Goal: To learn the basic terminology and relationships among the main characteristics of simple harmonic motion.
Motion that repeats itself over and over is called periodic motion. There are many examples of periodic motion: the earth revolving around the sun, an elastic ball bouncing up and down, or a block attached to a spring oscillating back and forth.

The last example differs from the first two, in that it represents a special kind of periodic motion called simple harmonic motion. The conditions that lead to simple harmonic motion are as follows:

- There must be a position of stable equilibrium.
- There must be a restoring force acting on the oscillating object. The direction of this force must always point toward the equilibrium, and its magnitude must be directly proportional to the magnitude of the object's displacement from its equilibrium position. Mathematically, the restoring force \vec{F} is given by $\vec{F}=-k \vec{x}$, where \vec{x} is the displacement from equilibrium and k is a constant that depends on the properties of the oscillating system.
- The resistive forces in the system must be reasonably small.

In this problem, we will introduce some of the basic quantities that describe oscillations and the relationships among them.

Consider a block of mass m attached to a spring with force constant k, as shown in the figure. The spring can be either stretched or compressed. The block slides on a frictionless horizontal surface, as shown. When the spring is relaxed, the block is located at $x=0$. If the block is pulled to the right a distance A and then released, A will be the amplitude of the resulting oscillations.

Assume that the mechanical energy of the block-spring system remains unchanged in the subsequent motion of the block.

Part A

After the block is released from $x=A$, it will

ANSWER:

$$
\begin{aligned}
& \text { remain at rest. } \\
& \text { move to the left until it reaches equilibrium and stop there. } \\
& \text { move to the left until it reaches } x=-A \text { and stop there. }
\end{aligned}
$$

move to the left until it reaches $x=-A$ and then begin to move to the right.

Correct

As the block begins its motion to the left, it accelerates. Although the restoring force decreases as the block approaches equilibrium, it still pulls the block to the left, so by the time the equilibrium position is reached, the block has gained some speed. It will, therefore, pass the equilibrium position and keep moving, compressing the spring. The spring will now be pushing the block to the right, and the block will slow down, temporarily coming to rest at $x=-A$.

After $x=-A$ is reached, the block will begin its motion to the right, pushed by the spring. The block will pass the equilibrium position and continue until it reaches $x=A$, completing one cycle of motion. The motion will then repeat; if, as we've assumed, there is no friction, the motion will repeat indefinitely.

The time it takes the block to complete one cycle is called the period. Usually, the period is denoted T and is measured in seconds.
The frequency, denoted f, is the number of cycles that are completed per unit of time: $f=1 / T$. In SI units, f is measured in inverse seconds, or hertz (Hz).

Part B

If the period is doubled, the frequency is

ANSWER: | | unchanged. |
| :--- | :--- |
| doubled. | |
| halved. | |

Correct

Part C

An oscillating object takes 0.10 s to complete one cycle; that is, its period is 0.10 s . What is its frequency f ?
Express your answer in hertz.
ANSWER:

$$
f={\underset{\text { Correct }}{ }}^{10} \mathrm{~Hz}
$$

Part D

Part C
Where on the graph is $x=0$?
A only
C only
E only
A and C
A and C and E
B and D

Correct

Part D
Where on the graph is the velocity $v>0$?

Hint D. $1 \quad$ Finding instantaneous velocity

Instantaneous velocity is the derivative of the position function with respect to time,

$$
v(t)=\frac{d x(t)}{d t} .
$$

Thus, you can find the velocity at any time by calculating the slope of the x vs. t graph. When is the slope greater than 0 on this graph?

Part F

At which moment is $K=U$?
Hint F. 1 Consider the potential energy

At this moment, $U=\frac{1}{2} U_{\max }$. Use the formula for $U_{\max }$ to obtain the corresponding distance from equilibrium.

ANSWER:
A
B
C
D
Correct

Part G

Find the kinetic energy K of the block at the moment labeled B
Hint G. 1 How to approach the problem

Find the potential energy first; then use conservation of energy.
Hint G. 2 Find the potential energy

Find the potential energy U of the block at the moment labeled B.

Express your answer in terms of k and A.
ANSWER:

$$
\begin{aligned}
U= & \frac{1}{8} k A^{2} \\
& \text { Correct }
\end{aligned}
$$

Using the facts that the total energy $E=\frac{1}{2} k A^{2}$ and that $E=K+U$, you can now solve for the kinetic energy K at moment B .
Express your answer in terms of k and A.

$$
\begin{aligned}
& \text { ANSWER: } \quad K=\frac{3}{8} k A^{2} \\
& \\
& \\
& \text { Correct }
\end{aligned}
$$

Cosine Wave
The graph shows the position x of an oscillating object as a function of time t. The equation of the graph is
where A is the amplitude, ω is the angular frequency, and ϕ is a phase constant. The quantities M, N, and T are measurements to be used in your answers.

Part A

What is A in the equation?
Hint A. $1 \quad$ Maximum of $x(t)$

Part B

What is ω in the equation?
Hint B. $1 \quad$ Period

Part C

What is ϕ in the equation?
Hint C. 1 Using the graph and trigonometry
What is x equal to when $t=-N$? Use your result for ω to solve for ϕ in terms of T, M, and N.
Hint C. 2 Using the graph and Part B
You might be able to find ϕ in terms of ω and then use your result from Part B.

ANSWER:

$$
N
$$

$T-N$

```
. }2\piN/
    -2\piN/T
    arccos(2\piN/T)
```

Correct

Hint A. 2 Find the amplitude

What is the amplitude A of the motion of the first mass?
Hint A.2.1 Definition of amplitude

Express your answer as a function of t. Express numerical constants to three significant figures.
ANSWER: $\quad x_{1}(t)=-\cos (12.6 t)$

Part B
What is $x_{2}(t)$, the position of mass II as a function of time? Assume that position is measured in meters and time is measured in seconds.

Hint B. 1	How to approach the problem	Hint not displayed
Hint B.2	Find the amplitude	
Hint B.3	Find the angular frequency	

Express your answer as a function of t. Express numerical constants to three significant figures.	
ANSWER:	$\begin{array}{r} x_{2}(t)=\frac{1}{2} \cos (2 \pi t) \\ \text { Correct } \end{array}$
Changing the Period of a Pendulum	
A simple pendulum consisting of a bob of mass m attached to a string of length L swings with a period T.	
Part A If the bob's mass is doubled, approximately what will the pendulum's new period be?	
Hint A. 1 Period of a simple pendulum \quad Hint not displayed	
ANSWER:	$T / 2$ T $\sqrt{2} T$ $2 T$ Correct
Part B If the pendulum is brought on the moon where the gravitational acceleration is about $g / 6$, approximately what will its period now be?	
Hint B. 1 How to approach the problem \quad Hint not displayed	
ANSWER:	$T / 6$ $T / \sqrt{6}$ $\sqrt{6} T$ $6 T$ Correct
Part C If the pendulum is taken into the orbiting space station what will happen to the bob?	
Hint C. 1 How to approach the problem \quad Hint not displayed	
ANSWER:	It will continue to oscillate in a vertical plane with the same period. It will no longer oscillate because there is no gravity in space. It will no longer oscillate because both the pendulum and the point to which it is attached are in free fall. It will oscillate much faster with a period that approaches zero. Correct
In the space s	where all objects undergo the same acceleration due to the earth's gravity, the tension in the string is zero and the

Gravity on Another Planet

After landing on an unfamiliar planet, a space explorer constructs a simple pendulum of length 53.0 cm . The explorer finds that the pendulum completes 94.0 full swing cycles in a time of 131 s .
Part A
What is the value of the acceleration of gravity on this planet?
Hint A. 1 How to approach the problem
Calculate the period of the pendulum, and use this to calculate the gravitational acceleration on the planet.
Hint A. $2 \quad$ Calculate the period
Calculate the period T of the pendulum.

Express your answer in seconds.
ANSWER: $\quad T=\underset{\text { Correct }}{1.3} \mathrm{~s}$

Hint A. 3 Equation for the period

The period of a simple pendulum is given by the equation $T=2 \pi \sqrt{L / g_{\text {planet }}}$, where L is the length of the pendulum and $g_{\text {planet }}$ is the gravitational acceleration on the planet.
Express your answer in meters per second per second.

Damped Egg on a Spring

A $50.0-\mathrm{g}$ hard-boiled egg moves on the end of a spring with force constant $k=25.0 \mathrm{~N} / \mathrm{m}$. It is released with an amplitude 0.300 m . A damping force $F_{x}=-b v$ acts on the egg. After it oscillates for 5.00 s , the amplitude of the motion has decreased to 0.100 m .

Part A

Calculate the magnitude of the damping coefficient b.

$$
\text { Hint A. } 1 \quad \text { How damped is it? }
$$

The system described above is
Hint A.1.1 How to determine damping

ANSWER:	Hint not displayed
critically damped	
overdamped	
underdamped	
Correct	

Hint A. $2 \quad$ What formula to use

In this problem, the motion is described by the general equation for an underdamped oscillator,

$$
x=A e^{-b t / 2 m} \cos \left(\omega^{\prime} t+\phi\right),
$$

where

$$
\omega^{\prime}=\sqrt{\frac{k}{m}-\frac{b^{2}}{4 m^{2}}},
$$

x is position, and t is time. The displacement is thus a product of a oscillating cosine term and a damping term $A_{1}(t)$. This equation is the solution to the damped oscillator equation $m \ddot{x}=-k x-b \dot{x}$.
Hint A. $3 \quad$ Find the amplitude

What is $A_{1}(t)$, the amplitude as a function of time? Use A_{0} for the initial displacement of the system and m for the mass of the egg.
Hint A.3.1 Initial amplitude

Hint not displayed

Give your answer in terms of A_{0}, m, b, and t.
ANSWER:

$$
\begin{aligned}
& A_{1}(t)=A_{0} e^{-\frac{b t}{2 m}} \\
& \text { Correct }
\end{aligned}
$$

Now evaluate $A_{1}(5.00 \mathrm{~s})$ and set your answer equal to 0.100 m as given in the problem introduction. Finally, solve for b.

Hint A. $4 \quad$ Solving for y in e^{y}
If $e^{y}=C$ then $y=\ln C$.
Express the magnitude of the damping coefficient numerically in kilograms per second, to three significant figures.
ANSWER:

$$
\begin{aligned}
& b= 2.20 \times 10^{-2} \\
& \text { Correct } \\
& \mathrm{kg} / \mathrm{s}
\end{aligned}
$$

Problem 14.70

An oscillator with a mass of 500 g and a period of 0.900 s has an amplitude that decreases by 2.20% during each complete oscillation.
Part A
If the initial amplitude is 10.6 cm , what will be the amplitude after 37.0 oscillations?

ANSWER:	${\underset{\text { Correct }}{4.65} \mathrm{~cm}}^{2}$
Part B At what time will the energy be reduced to 54.0% of its initial value?	
ANSWER:	${ }_{\text {Correct }}^{12.5} \mathrm{~s}$

Score Summary:
Your score on this assignment is 105%
You received 63.47 out of a possible total of 65 points, plus 4.8 points of extra credit.

