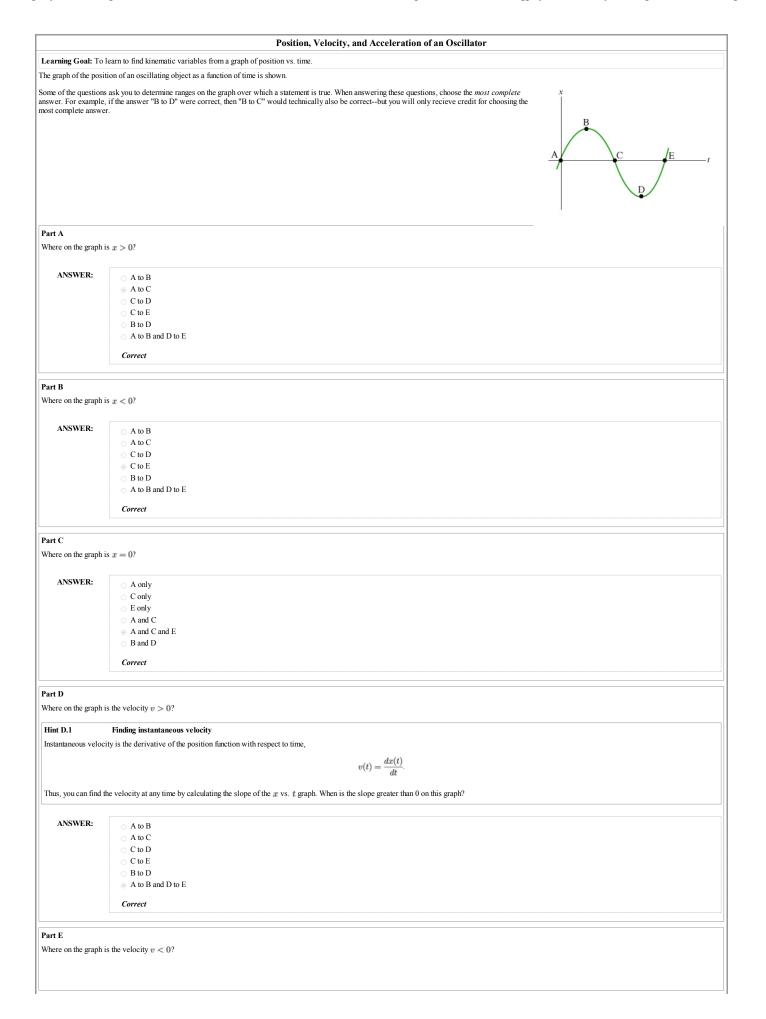
Chapter 14 Homework


Due: 9:00am on Thursday, November 19, 2009

Note: To understand how points are awarded, read your instructor's Grading Policy.

[Return to Standard Assignment View]

	Good Vibes: Introduction to Oscillations
Learning Goal: To l	learn the basic terminology and relationships among the main characteristics of simple harmonic motion.
_	self over and over is called <i>periodic motion</i> . There are many examples of periodic motion: the earth revolving around the sun, an elastic ball bouncing up and down, or a block attached to a spring
-	ers from the first two, in that it represents a special kind of periodic motion called simple harmonic motion. The conditions that lead to simple harmonic motion are as follows:
 There must be 	e a position of stable equilibrium. a restoring force acting on the oscillating object. The direction of this force must always point toward the equilibrium, and its magnitude must be directly proportional to the magnitude of the acement from its equilibrium position. Mathematically, the restoring force \vec{F} is given by $\vec{F} = -k\vec{x}$, where \vec{x} is the displacement from equilibrium and k is a constant that depends on the propertie.
of the oscillati	
In this problem, we w	vill introduce some of the basic quantities that describe oscillations and the relationships among them.
slides on a frictionle	mass m attached to a spring with force constant k , as shown in the figure. The spring can be either stretched or compressed. The block ess horizontal surface, as shown. When the spring is relaxed, the block is located at $x = 0$. If the block is pulled to the right a distance A will be the <i>amplitude</i> of the resulting oscillations.
Assume that the mech	hanical energy of the block-spring system remains unchanged in the subsequent motion of the block. $ \begin{array}{c} k \\ \hline \\ \hline \\ \hline \\ -A \\ 0 \\ A \end{array} $
Part A After the block is rel	leased from $x = A$, it will
ANSWER:	 remain at rest. move to the left until it reaches equilibrium and stop there. move to the left until it reaches x = −A and stop there. move to the left until it reaches x = −A and then begin to move to the right.
	Correct
reached, the block down, temporarily After $x = -A$ is	ns its motion to the left, it accelerates. Although the restoring force decreases as the block approaches equilibrium, it still pulls the block to the left, so by the time the equilibrium position is chas gained some speed. It will, therefore, pass the equilibrium position and keep moving, compressing the spring. The spring will now be pushing the block to the right, and the block will slow y coming to rest at $x = -A$.
	block to complete one cycle is called the <i>period</i> . Usually, the period is denoted T and is measured in seconds. ted f , is the number of cycles that are completed per unit of time: $f = 1/T$. In SI units, f is measured in inverse seconds, or hertz (Hz).
Part B If the period is doubl	led, the frequency is
ANSWER:	 unchanged. doubled. halved.
	Correct
Part C	
An oscillating object	t takes 0.10 \pm to complete one cycle; that is, its period is 0.10 \pm . What is its frequency f ?
Express your answe	er in hertz.
	$f = {}^{10}$ Hz
ANSWER:	^J Correct ^{AAD}
ANSWER:	^j Correct ¹¹⁰

If the frequency is 40) Hz, what is the period T ?
Express your answe	er in seconds.
ANSWER:	T = 0.025 s
	T = 0.025 s Correct
	ions refer to the figure that graphically depicts the oscillations of the block on the spring.
Note that the vertical	axis represents the x coordinate of the oscillating object, and the horizontal axis represents time. x
	R
	0 K L M N P t
	Q
D . D	
Part E Which points on the	x axis are located a distance A from the equilibrium position?
which points on the	
ANSWER:	O R only
	 Q only o both R and Q
	Correct
	Correct
Part F	
Suppose that the peri	iod is T. Which of the following points on the t axis are separated by the time interval T?
ANSWER:	 K and L K and M
	K and P
	Land N Mand P
	Correct
Now assume that the	x coordinate of point R is 0.12 m and the t coordinate of point K is 0.0050 s.
Part G	
What is the period 7	"?
Hint G.1	How to approach the problem
	How to approach the problem point $t = 0$ to the point K, what fraction of a full wavelength is covered? Call that fraction a. Then you can set $aT = 0.005$ s. Dividing by the fraction a will give the period T.
Express your answe	
ANSWER:	
ANSWER:	$T = \frac{0.02}{Correct}$ s
Part H	
	es the block take to travel from the point of maximum displacement to the opposite point of maximum displacement?
Express your answe	
ANSWER:	$t = \frac{0.01}{Correct}$ s
Part I	
What distance d doe	es the object cover during one period of oscillation?
Express your answe	er in meters.
ANSWER:	$d = \frac{0.48}{Correct}$ m
Part J	
What distance d doe	es the object cover between the moments labeled K and N on the graph?
Express your answe	er in meters.
ANSWER:	d = 0.36 m
	$d = \frac{0.36}{Correct}$ m

ANSWER:	• A to B Energy of Harmonic Oscillators
Learning Goal: To le	art to apply the law of conservation of energy to the analysis of harmonic oscillators.
Systems in simple harr	C to D nonic rob tho E, or harmonic oscillators, obey the law of conservation of energy just like all other systems do. Using energy considerations, one can analyze many aspects of motion of the oscillator.
	e simplified of name and the second of the s
	\odot A to B and D to E $E=K+U={\rm constant},$
where E is the total m	<i>Correct</i> echanical energy of the system, K is the kinetic energy, and U is the potential energy.
Where on the graph is	ion example of a harmonic oscillator is a mass attached to a spring. In this problem, we will consider a <i>horizontally</i> moving block attached to a spring. Note that, since the gravitational potential is in this case, it can be excluded from the calculations. it we velocity $v = 0$? potential energy is stored in the spring and is given by
Hint F.1	How to tell if $v = 0$ $T_L = \frac{1}{L_L - 2}$
	How to tell if $v = 0$ $U = \frac{1}{2}kx^2,$ Hint not displayed
where k is the force of	constant of the spring and x is the distance from the equilibrium position.
ANSWER: The kinetic energy of	• A only the system is as always
The kinetic chergy of	the system is as always, Bonly
	C only $K = \frac{1}{2}mv^2$,
where <i>m</i> is the mass	\odot E only of the block and v is the speed of the block.
	that there are C and E = constant.
we will also assume	\odot B and D
	Correct
	oscillator at four different moments, labeled A, B, C, and D, as shown in the figure . Assume that the force constant k, the mass of the $-A - A^{\frac{\sqrt{2}}{2}} = 0$ A/2 A
$\mathbf{Part} \mathbf{G}^{m}$, and the am	plitude of vibrations, A, are given. Answer the following questions. $-A - A_2 = 0$ A/2 A
Where on the graph is	the acceleration $a > 0$? A MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
Hint G.1	Finding acceleration
Acceleration is the s	econd derivative of the position function with respect to time:
	$a = \frac{d^2 x(t)}{dt^2}.$
	$a = \frac{dt^2}{dt^2}$.
This means that the s	ign of the acceleration is the same as the sign of the curvature of the x vs. t graph. The acceleration of a curve is negative for downward curvature and positive for upward curvature. Where is the
curvature greater that	$D \frac{k}{m}$
Part ANSWER:	• A to B
	ponds & Mc maximum potential energy of the system?
Hint A.1	C to D Consider, the position of the block
	B to D Hint not displayed
	• A to B and D to E
ANSWER:	Cofrect
Part H	• D
Where on the graph is	the acceleration a < 0? Correct
ANGWED	
ANSWER: Part B	A to B A to C
Which moment corres	ponds to (begininimum kinetic energy of the system?
Hint B.1	How C to F B to D
	A to B and D to E Hint not displayed
ANSWER:	Correct
ANSWER:	© A
Part I	0 C
Where on the graph is	the acceleration $a = 0$?
Hint I.1	Correct How to tell if $a = 0$
	displaced a distance A from equilibrium, the spring is stretched (or compressed) the most and the block is momentarily at rest. Therefore, the maximum potential energy is $U_{\text{max}} = \frac{1}{2}kA^2$. At
that moment, of cou ANSWER:	rse, $K = K_{\min} = 0$. Recall that $E = K + U$. Therefore, \land A only
	\odot B only $E = \frac{1}{2}kA^2$
	C only 2
In general, the mec	hanical energy of a harmonic oscillator equals its potential energy at the maximum or minimum displacement.
	A and C
Part C	A and C and E B and D m
Consider the block in	the process of oscillating. Correct

ANSWER:		o at the equilibrium position.
		at the amplitude displacement.
		moving to the right.
		moving to the left.
	If the kinetic energy of the block is increasing, the block <i>must</i> be	moving away from equilibrium.
		moving toward equilibrium.
		Correct
Part D		
Which moment corre-	sponds to the maximum kinetic energy of the system?	
Hint D.1	Consider the velocity of the block	
		Hint not displayed
ANSWER:		
	○ A ○ B	
	• C	
	D	
	Correct	
Part E		
	sponds to the minimum potential energy of the system?	
Hint E.1	Consider the distance from equilibrium	
	•	Hint not displayed
ANSWER:	○ A	
	• B	
	0 D	
	Correct	
_		
When the block is	at the equilibrium position, the spring is not stretched (or compresse	d) at all. At that moment, of course, $U = U_{\min} = 0$. Meanwhile, the block is at its maximum speed (v_{\max}). The maximum
kinetic energy can	then be written as $K_{\max} = \frac{1}{2}mv_{\max}^2$. Recall that $E = K + U$ and	that $U = 0$ at the equilibrium position. Therefore,
		$E = \frac{1}{2}mv_{\max}^2$.
		2
Recalling what we	found out before,	
		- 1
		$E = \frac{1}{2}kA^2,$
we can now conclu	ude that	
		$\frac{1}{2}kA^2 = \frac{1}{2}mv_{\max}^2,$
		$2^{n\times n} = 2^{n\times n} \max^n$
or		
		$v_{\max} = \sqrt{\frac{k}{m}} A = \omega A.$
		ų m.
Part F	17 170	
At which moment is	K = U?	
Hint F.1	Consider the potential energy	
At this moment, $U =$	= $\frac{1}{2}U_{\rm max}$. Use the formula for $U_{\rm max}$ to obtain the corresponding dist	ance from equilibrium.
ANSWER:	○ A	
	○ B	
	0 C	
	• D	
	Correct	
	L	
Part G		
Find the kinetic energ	by K of the block at the moment labeled B.	
Hint G.1	How to approach the problem	
Find the potential en	ergy first; then use conservation of energy.	
Hint G.2	Find the potential energy	
11mt 0.2	P	
11111 0.2		

Find the potential of	nergy U of the block at the moment labeled B.
Express your ans	ver in terms of kand A.
ANSWER:	1
ANSWER.	$U = rac{1}{8}kA^2$
	Correct
Using the facts t	hat the total energy $E = \frac{1}{2}kA^2$ and that $E = K + U$, you can now solve for the kinetic energy K at moment B.
Express your answ	er in terms of k and A.
ANSWER:	$K = \frac{3}{8}kA^2$
	Correct
	Cosine Wave
The graph shows the	position x of an oscillating object as a function of time t . The equation of the graph is
	$x(t) = A\cos\left(\omega t + \phi\right),$
	itude, ω is the angular frequency, and ϕ is a phase constant. The quantities M, N, and T are measurements to be used in your answers.
where A is the amp	nucle, ω is the angular nequency, and ϕ is a phase constant. The quantities M , N , and T are measurements to be used in your answers.
	M
D	
Part A What is A in the eq	nation?
what is A in the eq	
Hint A.1	Maximum of $x(t)$
	Hint not displayed
ANSWER:	$\circ rac{T}{M}$
	$\odot M$ $\odot 2M$
	M/T
	7/2
	Correct
Part B	
What is ω in the eq	nation?
Hint B.1	Period Hint not displayed
L	11111 пої шізріцуви
ANSWER:	$_{\odot}$ T
	$_{\odot} 2\pi T$
	$_{\odot}~2\pi/T$
	$_{\odot}$ 2/T
	$_{\odot}~1/T$
	Correct
Part C	
What is ϕ in the eq	action?
Hint C.1	Using the graph and trigonometry
	when $t = -N$? Use your result for ω to solve for ϕ in terms of T, M , and N .
Hint C.2	Using the graph and Part B
You might be able	to find ϕ in terms of ω and then use your result from Part B.
ANSWER:	
	$_{\odot}$ T - N

	$_{\odot}$ $2\pi N/T$
	$-2\pi N/T$
	$_{\odot}$ $\arccos(2\pi N/T)$
	Correct
	Analyzing Simple Harmonic Motion
This applet shows two	o masses on springs, each accompanied by a graph of its position versus time.
Part A	
	n for $x_1(t)$, the position of mass I as a function of time? Assume that position is measured in meters and time is measured in seconds.
Hint A.1	How to approach the problem
The most general to	rm of a sinusoidal wave is
	$x(t) = \pm A \sin(\omega t + \phi)$ or
	$x(t) = \pm A\cos(\omega t + \phi'),$
depending upon whe	ether you write the equation using the sine or cosine. Notice that the amplitude A and the angular frequency ω will be the same regardless of whether you choose to use sine or cosine. The phase ϕ
, however, will be c	lifterent, since for any α , we have the relation $\cos(\alpha) = -\sin(\alpha - \pi/2)$.
The amplitude A are	ad angular frequency ω can be determined directly from the graph. The decision whether to use sine or cosine is more a matter of convenience. Which of the following statements correctly identify
a choice of function	and phase that could be used to describe this graph?
Check all that appl	у.
ANSWER:	\bigtriangledown cosine, $\phi' = 0$
	\Box cosine, $\phi' = -\pi/2$
	\bigtriangledown cosine, $\phi' = \pi$
	sine, $\phi = 0$
	\bigtriangledown sine, $\phi = -\pi/2$
	\Box sine, $\phi = \pi$
	Answer Requested
Of the three corre	set options, the simplest is cosine with phase shift zero, but any of them will give the correct answer.
Hint A.2	Find the amplitude
What is the amplitud	le A of the motion of the first mass?
Hint A.2.1	Definition of amplitude
	Hint not displayed
Express your answ	er in meters to two significant figures.
ANSWER:	A = 1 m
	Correct
Hint A.3	Find the angular frequency
	frequency ω of the motion of the first mass?
Hint A.3.1	Angular frequency and frequency
	Hint not displayed
Express your answ	er in radians per second to three significant figures.
ANSWER:	$\omega = \frac{12.6}{Correct} \text{ rad/s}$
	Correct
Express your answe	er as a function of t. Express numerical constants to three significant figures.
ANSWER:	(10.0)
ANSWER.	$x_1(t) = \frac{-\cos(12.6t)}{Correct}$
Part B	
What is $x_2(t)$, the p	osition of mass II as a function of time? Assume that position is measured in meters and time is measured in seconds.
Hint B.1	How to approach the problem
Time D.1	Hint not displayed
Hint D 2	
Hint B.2	Find the amplitude Hint not displayed
Hint B.3	Find the angular frequency
	Hint not displayed

	$x_{2}(t) = \frac{1}{2} \frac{\cos(2\pi t)}{Correct}$
	Changing the Period of a Pendulum
A simple pendulum o	onsisting of a bob of mass m attached to a string of length L swings with a period T .
Part A If the bob's mass is	doubled, approximately what will the pendulum's new period be?
Hint A.1	Period of a simple pendulum Hint not displayed
ANSWER:	T/2
	• T
	$_{\odot}\sqrt{2}T$
	$_{\odot}~2T$
	Correct
Part B	
	rought on the moon where the gravitational acceleration is about $g/6$, approximately what will its period now be?
Hint B.1	How to approach the problem Hint not displayed
L	- ·
ANSWER:	$_{\odot}$ T/6
	$_{\odot} T/\sqrt{6}$
	$_{\odot}\sqrt{6}T$
	$_{\odot}$ 6T
Part C	Correct
	Correct ken into the orbiting space station what will happen to the bob? How to approach the problem Hint not displayed
-	ken into the orbiting space station what will happen to the bob? How to approach the problem
If the pendulum is ta	ken into the orbiting space station what will happen to the bob? How to approach the problem Hint not displayed It will continue to oscillate in a vertical plane with the same period.
If the pendulum is ta Hint C.1	ken into the orbiting space station what will happen to the bob? How to approach the problem Hint not displayed It will continue to oscillate in a vertical plane with the same period. It will no longer oscillate because there is no gravity in space.
If the pendulum is ta Hint C.1	ken into the orbiting space station what will happen to the bob? How to approach the problem Hint not displayed It will continue to oscillate in a vertical plane with the same period. It will no longer oscillate because there is no gravity in space. It will no longer oscillate because both the pendulum and the point to which it is attached are in free fall.
If the pendulum is ta	ken into the orbiting space station what will happen to the bob? How to approach the problem Hint not displayed It will continue to oscillate in a vertical plane with the same period. It will no longer oscillate because there is no gravity in space. It will no longer oscillate because both the pendulum and the point to which it is attached are in free fall. It will oscillate much faster with a period that approaches zero.
If the pendulum is ta	ken into the orbiting space station what will happen to the bob? How to approach the problem Hint not displayed It will continue to oscillate in a vertical plane with the same period. It will no longer oscillate because there is no gravity in space. It will no longer oscillate because both the pendulum and the point to which it is attached are in free fall.
If the pendulum is ta Hint C.1 ANSWER:	ken into the orbiting space station what will happen to the bob? How to approach the problem Hint not displayed It will continue to oscillate in a vertical plane with the same period. It will no longer oscillate because there is no gravity in space. It will no longer oscillate because both the pendulum and the point to which it is attached are in free fall. It will oscillate much faster with a period that approaches zero.
If the pendulum is ta Hint C.1 ANSWER:	ken into the orbiting space station what will happen to the bob? How to approach the problem Hint not displayed I twill continue to oscillate in a vertical plane with the same period. It will no longer oscillate because there is no gravity in space. It will no longer oscillate because both the pendulum and the point to which it is attached are in free fall. It will oscillate much faster with a period that approaches zero. Correct
If the pendulum is ta Hint C.1 ANSWER: In the space statio	ken into the orbiting space station what will happen to the bob? How to approach the problem Hint not displayed I twill continue to oscillate in a vertical plane with the same period. I twill continue to oscillate because there is no gravity in space. I twill no longer oscillate because both the pendulum and the point to which it is attached are in free fall. I twill oscillate much faster with a period that approaches zero. Correct
If the pendulum is ta Hint C.1 ANSWER: In the space statu After landing on an u Part A	ken into the orbiting space station what will happen to the bob? How to approach the problem Iint not displayed I twill continue to oscillate in a vertical plane with the same period. I twill continue to oscillate because there is no gravity in space. I twill no longer oscillate because the pendulum and the point to which it is attached are in free fall. I twill oscillate much faster with a period that approaches zero. Correct m, where all objects undergo the same acceleration due to the earth's gravity, the tension in the string is zero and the bob does not fall relative to the point to which the string is attached. Gravity on Another Planet
If the pendulum is ta Hint C.1 ANSWER: In the space statue After landing on an u Part A What is the value of	ken into the orbiting space station what will happen to the bob? How to approach the problem Hint not displayed It will continue to oscillate in a vertical plane with the same period. It will no longer oscillate because there is no gravity in space. It will no longer oscillate because both the pendulum and the point to which it is attached are in free fall. It will oscillate much faster with a period that approaches zero. Correct n, where all objects undergo the same acceleration due to the earth's gravity, the tension in the string is zero and the bob does not fall relative to the point to which the string is attached. Correct familiar planet, a space explorer constructs a simple pendulum of length 53.0 cm. The explorer finds that the pendulum completes 94.0 full swing cycles in a time of 131 s. The acceleration of gravity on this planet?
If the pendulum is ta Hint C.1 ANSWER: In the space station After landing on an u Part A What is the value of Hint A.1	ken into the orbiting space station what will happen to the bob? How to approach the problem Hint not displayed I twill continue to oscillate in a vertical plane with the same period. It will continue to oscillate because there is no gravity in space. It will no longer oscillate because both the pendulum and the point to which it is attached are in free fall. It will oscillate much faster with a period that approaches zero. Correct mo, where all objects undergo the same acceleration due to the earth's gravity, the tension in the string is zero and the bob does not fall relative to the point to which the string is attached.
If the pendulum is ta Hint C.1 ANSWER: In the space station After landing on an of Part A What is the value of Hint A.1 Calculate the perioo Hint A.2	ken into the orbiting space station what will happen to the bob? How to approach the problem IInt not displayed It will continue to oscillate in a vertical plane with the same period. It will no longer oscillate because there is no gravity in space. It will no longer oscillate because both the pendulum and the point to which it is attached are in free fall. It will oscillate much faster with a period that approaches zero. Correct n, where all objects undergo the same acceleration due to the earth's gravity, the tension in the string is zero and the bob does not fall relative to the point to which the string is attached. familiar planet, a space explorer constructs a simple pendulum of length 53.0 cm. The explorer finds that the pendulum completes 94.0 full swing cycles in a time of 131 s. How to approach the problem
If the pendulum is ta Hint C.1 ANSWER: In the space station After landing on an u Part A What is the value of Hint A.1 Calculate the perion Hint A.2 Calculate the perion	ken into the orbiting space station what will happen to the bob? How to approach the problem I int not displayed I will continue to oscillate in a vertical plane with the same period. I will no longer oscillate because there is no gravity in space. I will no longer oscillate because both the pendulum and the point to which it is attached are in free fall. I will no longer oscillate because both the pendulum and the point to which it is attached are in free fall. I will no longer oscillate because both the pendulum and the point to which it is attached are in free fall. I will oscillate much faster with a period that approaches zero. Correct m, where all objects undergo the same acceleration due to the earth's gravity, the tension in the string is zero and the bob does not fall relative to the point to which the string is attached. Gravity on Another Planet nfamiliar planet, a space explorer constructs a simple pendulum of length 53.0 cm. The explorer finds that the pendulum completes 94.0 fall swing cycles in a time of 131 s. How to approach the problem d of the pendulum, and use this to calculate the gravitational acceleration on the planet. Calculate the period d T of the pendulum.
If the pendulum is ta Hint C.1 ANSWER: In the space station After landing on an u Part A What is the value of Hint A.1 Calculate the perion Hint A.2 Calculate the perion Express your ansy	ken into the orbiting space station what will happen to the bob? How to approach the problem Iint not displayed I will continue to oscillate in a vertical plane with the same period. I will no longer oscillate because there is no gravity in space. I will no longer oscillate because both the produlum and the point to which it is attached are in free fall. I will no longer oscillate because both the produlum and the point to which it is attached are in free fall. I will no longer oscillate much faster with a period that approaches zero. Correct I where all objects undergo the same acceleration due to the earth's gravity, the tension in the string is zero and the bob does not fall relative to the point to which the string is attached. Correct I where all objects undergo the same acceleration due to the earth's gravity, the tension in the string is zero and the bob does not fall relative to the point to which the string is attached. Correct I where all objects undergo the same acceleration of length 53.0 cm. The explorer finds that the pendulum completes 94.0 full swing cycles in a time of 131 s. Calculate the problem d of the pendulum, and use this to calculate the gravitational acceleration on the planet. Calculate the period d T of the pendulum.
If the pendulum is ta Hint C.1 ANSWER: In the space station After landing on an u Part A What is the value of Hint A.1 Calculate the perion Hint A.2 Calculate the perion	ken into the orbiting space station what will happen to the bob? How to approach the problem I int not displayed I will continue to oscillate in a vertical plane with the same period. I will no longer oscillate because there is no gravity in space. I will no longer oscillate because both the pendulum and the point to which it is attached are in free fall. I will no longer oscillate because both the pendulum and the point to which it is attached are in free fall. I will no longer oscillate because both the pendulum and the point to which it is attached are in free fall. I will oscillate much faster with a period that approaches zero. Correct m, where all objects undergo the same acceleration due to the earth's gravity, the tension in the string is zero and the bob does not fall relative to the point to which the string is attached. Gravity on Another Planet nfamiliar planet, a space explorer constructs a simple pendulum of length 53.0 cm. The explorer finds that the pendulum completes 94.0 fall swing cycles in a time of 131 s. How to approach the problem d of the pendulum, and use this to calculate the gravitational acceleration on the planet. Calculate the period d T of the pendulum.
If the pendulum is ta Hint C.1 ANSWER: In the space station After landing on an u Part A What is the value of Hint A.1 Calculate the perion Hint A.2 Calculate the perion Express your ansy	ken into the orbiting space station what will happen to the bob? How to approach the problem Ilint not displayed It will continue to oscillate in a vertical plane with the same period. It will continue to oscillate because there is no gravity in space. It will no longer oscillate because both the produlum and the point to which it is attached are in free fall. It will continue to acceleration due to the earth's gravity, the tension in the string is zero and the bob does not fall relative to the point to which the string is attached. Correct Gravity on Another Planet familiar planet, a space explorer constructs a simple pendulum of length 53.0 cm. The explorer finds that the pendulum completes 94.0 full swing cycles in a time of 131 s. How to approach the problem d of the pendulum, and use this to calculate the gravitational acceleration on the planet. Calculate the period d T of the pendulum.
If the pendulum is ta Hint C.1 ANSWER: In the space station After landing on an u Part A What is the value of Hint A.1 Calculate the perion Hint A.2 Calculate the perion Express your answ ANSWER: Hint A.3	Ken into the orbiting space station what will happen to the bob? How to approach the problem It will continue to oscillate in a vertical plane with the same period. It will no longer oscillate because both the point to which it is attached are in free fall. It will no longer oscillate because both the point to which it is attached are in free fall. It will no longer oscillate because both the period that approaches zero. Correct In, where all objects undergo the same acceleration due to the earth's gravity, the tension in the string is zero and the bob does not fall relative to the point to which the string is attached. Gravity on Another Planet Infamiliar planet, a space explorer constructs a simple pendulum of length 53.0 cm. The explorer finds that the pendulum completes 94.0 fall swing cycles in a time of 131 s. "the acceleration of gravity on this planet? How to approach the problem d of the pendulum, and use this to calculate the gravitational acceleration on the planet. Calculate the period d T of the pendulum. teri in seconds. If = 1.39 Correct

	1
ANSWER:	$g_{\text{planet}} = \frac{10.8}{Correct}$ m/s ²
	Problem 14.26
	ding at the end of a silk thread. You can make the spider bounce up and down on the thread by tapping lightly on his feet with a pencil. You soon discover that you can give the spider the largest bungee cord if you tap exactly once every second.
Part A What is the spring co	nstant of the silk thread?
ANSWER:	7.90×10 ⁻² N/m Correct
	Damped Egg on a Spring
_	egg moves on the end of a spring with force constant $k = 25.0$ N/m. It is released with an amplitude 0.300 m. A damping force $F_x = -bv$ acts on the egg. After it oscillates for 5.00 s, the on has decreased to 0.100 m.
Part A Calculate the magnitu	the of the damping coefficient b .
Hint A.1 The system describe	How damped is it? d above is
Hint A.1.1	How to determine damping
	Hint not displayed
ANSWER:	 critically damped overdamped underdamped
	Correct
Hint A.2 In this problem, the	What formula to use motion is described by the general equation for an underdamped oscillator,
	$x = Ae^{-bt/2m}\cos\left(\omega't + \phi\right),$
where	
	$\omega' = \sqrt{\frac{k}{m} - \frac{b^2}{4m^2}},$
x is position, and t	is time. The displacement is thus a product of a oscillating cosine term and a damping term $A_1(t)$. This equation is the solution to the damped oscillator equation $m\ddot{x} = -kx - b\dot{x}$.
Hint A.3	Find the amplitude
What is $A_1(t)$, the	amplitude as a function of time? Use A_0 for the initial displacement of the system and m for the mass of the egg.
Hint A.3.1	Initial amplitude Hint not displayed
Give your answer i	in terms of $A_0, m, b,$ and $t.$
ANSWER:	$A_1(t) = \frac{A_0 e^{-\frac{M}{2m}}}{2}$
	Correct
Now evaluate A_1	$(5.00 \ s)$ and set your answer equal to $0.100 \ m$ as given in the problem introduction. Finally, solve for b.
Hint A.4	Solving for y in e^y
If $e^y = C$ then $y =$	
	ude of the damping coefficient numerically in kilograms per second, to three significant figures.
ANSWER:	$b = \frac{2.20 \times 10^{-2}}{Correct}$ kg/s
	Problem 14.70
An oscillator with a n	rrobern 14.70 rass of 500 g and a period of 0.900 s has an amplitude that decreases by 2.20% during each complete oscillation.
Part A If the initial amplitud	e is 10.6 cm, what will be the amplitude after 37.0 oscillations?

ANSWER:	4.65 Correct CIII
rt B what time will th	he energy be reduced to 54.0% of its initial value?

Score Summary:

Your score on this assignment is 105%. You received 63.47 out of a possible total of 65 points, plus 4.8 points of extra credit.